Unique differentiation programs of human fetal liver stem cells shown both in vitro and in vivo in NOD/SCID mice.
نویسندگان
چکیده
Comparative measurements of different types of hematopoietic progenitors present in human fetal liver, cord blood, and adult marrow showed a large (up to 250-fold), stage-specific, but lineage-unrestricted, amplification of the colony-forming cell (CFC) compartment in the fetal liver, with a higher ratio of all types of CFC to long-term culture-initiating cells (LTC-IC) and a lower ratio of total (mature) cells to CFC. Human fetal liver LTC-IC were also found to produce more CFC in LTC than cord blood or adult marrow LTC-IC, and more of the fetal liver LTC-IC-derived CFC were erythroid. Human fetal liver cells regenerated human multilineage hematopoiesis in NOD/SCID mice with the same kinetics as human cord blood and adult marrow cells, but sustained a high level of terminal erythropoiesis not seen in adult marrow-engrafted mice unless exogenous human erythropoietin (Epo) was injected. This may be due to a demonstrated 10-fold lower activity of murine versus human Epo on human cells, sufficient to distinguish between a differential Epo sensitivity of fetal and adult erythroid precursors. Examination of human LTC-IC, CFC, and erythroblasts generated either in NOD/SCID mice and/or in LTC showed the types of cells and hemoglobins produced also to reflect their ontological origin, regardless of the environment in which the erythroid precursors were generated. We suggest that ontogeny may affect the behavior of cells at many stages of hematopoietic cell differentiation through key changes in shared signaling pathways.
منابع مشابه
HEMATOPOIESIS Unique Differentiation Programs of Human Fetal Liver Stem Cells Shown Both In Vitro and In Vivo in NOD/SCID Mice
Comparative measurements of different types of hematopoietic progenitors present in human fetal liver, cord blood, and adult marrow showed a large (up to 250-fold), stage-specific, but lineage-unrestricted, amplification of the colony-forming cell (CFC) compartment in the fetal liver, with a higher ratio of all types of CFC to long-term culture-initiating cells (LTC-IC) and a lower ratio of tot...
متن کاملHigh marrow seeding efficiency of human lymphomyeloid repopulating cells in irradiated NOD/SCID mice.
Transplantable human hematopoietic stem cells (competitive repopulating units [CRU]) can be quantitated based on their ability to produce large populations of lymphoid and myeloid progeny within 6 weeks in the marrow of intravenously injected, sublethally irradiated NOD/SCID mice. It is shown that the proportions of total injected human fetal liver and cord blood CRU in the marrow of mice 24 ho...
متن کاملEngraftment potential into NOD/SCID mice of CD34+ cells derived from human fetal liver as compared to fetal bone marrow.
BACKGROUND AND OBJECTIVES We hypothesized that qualitative or quantitative differences in hematopoietic stem cells from fetal liver (FL) and fetal bone marrow (FBM) may be the cause of their organ specificity. DESIGN AND METHODS To analyze possible differences in vivo, we compared the engraftment potential of equal numbers of CD34+ cells isolated from human FL or FBM into immunodeficient NOD/...
متن کاملOverexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo.
Several studies point to multiple members of the Hox transcription factor family as playing key roles in normal hematopoietic development, and they link the imbalanced expression of these transcription factors, in particular of the Abd-like A cluster HOX genes HOXA9 and HOXA10, to leukemogenesis. To test directly the hypothesis that HOXA10 is involved in human hematopoietic development, the gen...
متن کاملChanges in the Proliferative Activity of Human Hematopoietic Stem Cells in NOD/SCID Mice and Enhancement of Their Transplantability after In Vivo Treatment with Cell Cycle Inhibitors
Human hematopoietic tissue contains rare stem cells with multilineage reconstituting ability demonstrable in receptive xenogeneic hosts. We now show that within 3 wk nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice transplanted with human fetal liver cells regenerate near maximum levels of daughter human hematopoietic stem cells (HSCs) able to repopulate secondary NOD/SCID mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 94 8 شماره
صفحات -
تاریخ انتشار 1999